spiro[1,3-Benzodioxole-2,4'(4H-3,1)-benzothiazines]
and their Cleavage with Amines and Hydrazines.
A New Series of Spiranes.

N. Latif, I.F. Zeid, N. Mishriky and F.M. Assad (National Research Centre, Dokki, Cairo, A.R.E.)

(Received in UK 18 February 1974; accepted for publication 4 March 1974)

Freviously we have reported on a new synthesis of 1:3-benzodioxoles by the action of tetrahalo- \underline{o} -benzoquinones on thiones (1).

In the present work, it is found that tetrachloro-o-benzoquinone reacts with the benzothiazine-4-thiones(Ia-c) in boiling toluene to give the hitherto unknown spiranes, 2-aryl-4,5,6,7-tetrachloro-spiro[1,3-benzodioxole-2,4'-(4H-3.1)-benzothiazines (IIa-c). Tetrabromo-o-benzoquinone reacts similarly with Ia affording IId. The spiranes are colourless; their i.r. spectra lack v_{c-0} and v_{c-s} and exhibit v_{c-N} at 1560 cm⁻¹ (cf. 2). They are cleaved by HC1 in dioxane affording Id-f together with tetrahalocatechol (1). II undergo unusual cleavage with amines and hydrazines affording the quinazoline-4thiones III and tetrahalocatechol. Thus, IIIa-e are obtained by the action of the corresponding anilines and phenylhydrazine on IIa. Similarly IIIf-i are produced by the action of aniline and phenylhydrazine on IIb and IIc. respectively. IIIa-c.e.h. and i have been previously described (3), whereas structure of IIId.f. and g is supported by oxidation to the corresponding quinazoline-4-ones. Apparently, cleavage proceeds through the initial attack of the nucleophile on the spiro-2,4'-carbon and formation of IV through ring opening and recyclization (3). Subsequent cleavage of the dioxole ring affords III and the catechol (cf. V).

References:

- N. Latif and I. Fathy, Can. J. Chem. <u>37</u>, 863 (1959);
 N. Latif,
 I. Fathy, N. Mishriky and A. Atallah, J. Org. Chem. <u>25</u>, 1618 (1960).
- H.N.A. Jallo, A. Al Khashab and I.G. Sallomi, J. Chem. Soc. Perkin I, 1022 (1972).
- L. Legrand and N. Lozach, Bull. Soc. Chim. Fr., 1400 (1961); <u>ibid</u>., 2088 (1960).

Ia,	R=C ₆ H ₅ ;	X=S					
	$R = \underline{p} - CH_3C_6H_4$;	X=S				m.p.°C.	yield %
	$R = \underline{p} - CH_3OC_6H_4$;	X=S	IIa,	R=C6H5;	R'=C1	247	4 9
	R=C ₆ H ₅ ;			$R = \underline{p} - CH_3C_6H_4;$	R'=C1	253-4	38
e,	R=p-0H3C6H4;	X=O		$R=\underline{p}-CH_3OC_6H_4$;		250-1	4 8
f,	$R=p-CH_3OC_6H_4;$	X =0		R=C ₆ H ₅ ;		263-4	41.5

· · · · · · · · · · · · · · · · · · ·	14			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		m.p.°C.	yield %	
IIIa, R=R'=C6H5		208	77	~N≈°°-
b, $R=C_6H_5$; $R'=\underline{p}-CH$.	3 ^C 6 ^H 4	2 27- 8	76	
c, R=C ₆ H ₅ ; R'=p-CH ₃	οc ₆ Η ₄	215	7 8	IV
d, $R=C_6H_5$; $R'=p-C$		230-1	64	
e, $R = C_6 H_5$; $R' = MI$	HC6H5	138	85	
f, R=p-CH ₃ C ₆ H ₄ ; R':		23 3-9	67	
g, $R=\underline{p}-CH_3C_6H_4$; R'=NH		162	76	\
h, $R = \underline{p} - CH_3 OC_6 H_4$; R'=	°C6H5	231-2	74	.O . OH
i, $R=\underline{p}-CH_3OC_6H_4$; R'=NF	™ ₆ H ₅	143	73	C —SH
	•			N = c -

v